Official National Aeronautics and Space Administration Website
Earth planning date: Friday, Oct. 25, 2024 The changes to the plan Wednesday, moving the drive a sol earlier, meant that we started off planning this morning about 18 meters (about 59 feet) farther along the western edge of Gediz Vallis and with all the data we needed for planning. This included the knowledge that […]
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4345-4347: Contact Science is Back on the Table NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on sol 4343 — Martian day 4,343 of the Mars Science Laboratory mission — on Oct. 24, 2024 at 15:26:28 UTC. NASA/JPL-Caltech Earth planning date: Friday, Oct. 25, 2024 The changes to the plan Wednesday, moving the drive a sol earlier, meant that we started off planning this morning about 18 meters (about 59 feet) farther along the western edge of Gediz Vallis and with all the data we needed for planning. This included the knowledge that once again one of Curiosity’s wheels was perched on a rock. Luckily, unlike on Wednesday, it was determined that it was safe to still go ahead with full contact science for this weekend. This consisted of two targets “Mount Brewer” and “Reef Lake,” two targets on the top and side of the same block. Aside from the contact science, Curiosity has three sols to fill with remote imaging. The first two sols include “targeted science,” which means all the imaging of specific targets in our current workspace. Then, after we drive away on the second sol, we fill the final sol of the plan with “untargeted science,” where we care less about knowing exactly where the rover is ahead of time. A lot of the environmental team’s (or ENV) activities fall under this umbrella, which is why our dedicated “ENV Science Block” (about 30 minutes of environmental activities one morning every weekend) tends to fall at the end of a weekend plan. But that’s getting ahead of myself. The weekend plan starts off with two ENV activities — a dust devil movie and a suprahorizon cloud movie. While cloud movies are almost always pointed in the same direction, our dust devil movie has to be specifically targeted. Recently we’ve been looking southeast toward a more sandy area (which you can see above), to see if we can catch dust lifting there. After those movies we hand the reins back over to the geology team (or GEO) for ChemCam observations of Reef Lake and “Poison Meadow.” Mastcam will follow this up with its own observations of Reef Lake and the AEGIS target from Wednesday’s plan. The rover gets some well-deserved rest before waking up for the contact science I talked about above, followed by a late evening Mastcam mosaic of “Fascination Turret,” a part of Gediz Vallis ridge that we’ve seen before. We’re driving away on the second sol, but before that we have about another hour of science. ChemCam and Mastcam both have observations of “Heaven Lake” and the upper Gediz Vallis ridge, and ENV has a line-of-sight observation, to see how much dust is in the crater, and a pre-drive deck monitoring image to see if any dust moves around on the rover deck due to either driving or wind. Curiosity gets a short nap before a further drive of about 25 meters (about 82 feet). The last sol of the weekend is a ChemCam special. AEGIS will autonomously choose a target for imaging, and then ChemCam has a passive sky observation to examine changing amounts of atmospheric gases. The weekend doesn’t end at midnight, though — we wake up in the morning for the promised morning ENV block, which we’ve filled with two cloud movies, another line-of-sight, and a tau observation to see how dusty the atmosphere is. Written by Alex Innanen, Atmospheric Scientist at York University Share Details Last Updated Oct 28, 2024 Related Terms Blogs Explore More 4 min read Sols 4343-4344: Late Slide, Late Changes Article 3 days ago 2 min read Red Rocks with Green Spots at ‘Serpentine Rapids’ Article 3 days ago 4 min read Sols 4341-4342: A Bumpy Road Article 4 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
- Chandra X-Ray Observatory
- Marshall Astrophysics
- Marshall Space Flight Center
- Spitzer Space Telescope
- Star Clusters
- Stars
Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets. A team of astronomers used NASA’s Chandra X-ray Observatory, in […]
X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets. A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished. The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun — at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image. The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster. In this new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region. In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming. Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between 5 and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated. The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together. For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect — meaning the worst place to be for a would-be planetary system — is within about 1.6 light-years of the most massive stars in the cluster. A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster. Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. JPL managed the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA. Read more from NASA’s Chandra X-ray Observatory. Learn more about the Chandra X-ray Observatory and its mission here: https://www.nasa.gov/chandra https://chandra.si.edu Visual Description This release features a composite image of the Cygnus OB2 star cluster, which resembles a night sky blanketed in orange, purple, and grey clouds. The center of the square image is dominated by purple haze. This haze represents diffuse X-ray emissions, and young stars, detected by the Chandra X-ray observatory. Surrounding the purple haze is a mottled, streaky, brick orange cloud. Another cloud resembling a tendril of grey smoke stretches from our lower left to the center of the image. These clouds represent relatively cool dust and gas observed by the Spitzer Space Telescope. Although the interwoven clouds cover most of the image, the thousands of stars within the cluster shine through. The lower-mass stars present as tiny specks of light. The massive stars gleam, some with long refraction spikes. News Media Contact Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 mwatzke@cfa.harvard.edu Lane Figueroa Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 lane.e.figueroa@nasa.gov
- Citizen Science
- Opportunities For Students to Get Involved
- Plant Biology
- Science Activation
- Vegetable Production System (VEGGIE)
Since 2015, students from across the USA have been partnering with scientists at NASA to advance research on growing plants in space, ultimately to feed astronauts on long-distance space missions, as part of Fairchild Tropical Botanic Garden’s Growing Beyond Earth project, which is now in its 9th year. This classroom-based citizen science project for 6th-12th […]
Learn Home Watch How Students Help NASA… Citizen Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth Since 2015, students from across the USA have been partnering with scientists at NASA to advance research on growing plants in space, ultimately to feed astronauts on long-distance space missions, as part of Fairchild Tropical Botanic Garden’s Growing Beyond Earth project, which is now in its 9th year. This classroom-based citizen science project for 6th-12th grade students includes a series of plant experiments conducted by students in a Fairchild-designed plant habitat similar to the Vegetable Production System (VEGGIE) on the International Space Station. This year, 8000+ students from 400+ schools are testing new edible plant varieties, studying radiation effects on growth, exploring the perfect light spectrum for super-sized space radishes, and experimenting with cosmic soil alternatives. NASA citizen science projects are open to everyone around the world, not limited to U.S. citizens or residents. They are collaborations between scientists and interested members of the public. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. More than 450 NASA citizen scientists have been named as co-authors on refereed scientific publications. Explore opportunities for you to get involved and do NASA science: https://science.nasa.gov/citizen-science/ The Growing Beyond Earth project is supported by NASA under cooperative agreement award number 80NSSC22MO125 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Credit: Niki Jose Share Details Last Updated Oct 28, 2024 Editor NASA Science Editorial Team Related Terms Citizen Science Opportunities For Students to Get Involved Plant Biology Science Activation Vegetable Production System (VEGGIE) Explore More 3 min read Kites in the Classroom: Training Teachers to Conduct Remote Sensing Missions Article 3 days ago 2 min read Educator Night at the Museum of the North: Activating Science in Fairbanks Classrooms Article 4 days ago 3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon Article 5 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
- International Space Station (ISS)
NASA astronaut Don Pettit fills a sphere of water with food coloring in this image from Oct. 20, 2024. Pettit calls experiments like these “science of opportunity” – moments of scientific exploration that spontaneously come to mind because of the unique experience of being on the International Space Station. During his previous missions, Pettit has contributed […]
NASA/Don Pettit NASA astronaut Don Pettit fills a sphere of water with food coloring in this image from Oct. 20, 2024. Pettit calls experiments like these “science of opportunity” – moments of scientific exploration that spontaneously come to mind because of the unique experience of being on the International Space Station. During his previous missions, Pettit has contributed to advancements for human space exploration aboard the International Space Station resulting in several published scientific papers and breakthroughs. See other inventive experiments Pettit has conducted. Image credit: NASA/Don Pettit
- Perseverance (Rover)
- Astrobiology
- Jet Propulsion Laboratory
- Mars
- Mars 2020
On its way up the side of Jezero Crater, the agency’s latest Red Planet off-roader peers all the way back to its landing site and scopes the path ahead. NASA’s Perseverance Mars rover is negotiating a steeply sloping route up Jezero Crater’s western wall with the aim of cresting the rim in early December. […]
6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This enhanced-color mosaic was taken on Sept. 27 by the Perseverance rover while climbing the western wall of Jezero Crater. Many of the landmarks visited by the rover during its 3½-year exploration of Mars can be seen. NASA/JPL-Caltech/ASU/MSSS On its way up the side of Jezero Crater, the agency’s latest Red Planet off-roader peers all the way back to its landing site and scopes the path ahead. NASA’s Perseverance Mars rover is negotiating a steeply sloping route up Jezero Crater’s western wall with the aim of cresting the rim in early December. During the climb, the rover snapped not only a sweeping view of Jezero Crater’s interior, but also imagery of the tracks it left after some wheel slippage along the way. An annotated version of the mosaic captured by Perseverance highlights nearly 50 labeled points of interest across Jezero Crater, including the rover’s landing site. The 44 images that make up the mosaic were taken Sept. 27. NASA/JPL-Caltech/ASU/MSSS Stitched together from 44 frames acquired on Sept. 27, the 1,282nd Martian day of Perseverance’s mission, the image mosaic features many landmarks and Martian firsts that have made the rover’s 3½-year exploration of Jezero so memorable, including the rover’s landing site, the spot where it first found sedimentary rocks, the location of the first sample depot on another planet, and the final airfield for NASA’s Ingenuity Mars Helicopter. The rover captured the view near a location the team calls “Faraway Rock,” at about the halfway point in its climb up the crater wall. “The image not only shows our past and present, but also shows the biggest challenge to getting where we want to be in the future,” said Perseverance’s deputy project manager, Rick Welch of NASA’s Jet Propulsion Laboratory in Southern California. “If you look at the right side of the mosaic, you begin to get an idea what we’re dealing with. Mars didn’t want to make it easy for anyone to get to the top of this ridge.” Visible on the right side of the mosaic is a slope of about 20 degrees. While Perseverance has climbed 20-degree inclines before (both NASA’s Curiosity and Opportunity rovers had crested hills at least 10 degrees steeper), this is the first time it’s traveled that steep a grade on such a slippery surface. This animated orbital-map view shows the route NASA’s Perseverance Mars rover has taken since its February 2021 landing at Jezero Crater to July 2024, when it took its “Cheyava Falls” sample. As of October 2024, the rover has driven over 30 kilometers (18.65 miles), and has collected 24 samples of rock and regolith as well as one air sample. NASA/JPL-Caltech Soft, Fluffy During much of the climb, the rover has been driving over loosely packed dust and sand with a thin, brittle crust. On several days, Perseverance covered only about 50% of the distance it would have on a less slippery surface, and on one occasion, it covered just 20% of the planned route. “Mars rovers have driven over steeper terrain, and they’ve driven over more slippery terrain, but this is the first time one had to handle both — and on this scale,” said JPL’s Camden Miller, who was a rover planner, or “driver,” for Curiosity and now serves the same role on the Perseverance mission. “For every two steps forward Perseverance takes, we were taking at least one step back. The rover planners saw this was trending toward a long, hard slog, so we got together to think up some options.” On Oct. 3, they sent commands for Perseverance to test strategies to reduce slippage. First, they had it drive backward up the slope (testing on Earth has shown that under certain conditions the rover’s “rocker-bogie” suspension system maintains better traction during backward driving). Then they tried cross-slope driving (switchbacking) and driving closer to the northern edge of “Summerland Trail,” the name the mission has given to the rover’s route up the crater rim. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video NASA’s Perseverance drives first backward then forward as it negotiates some slippery terrain found along a route up to the rim of Jezero Crater on Oct. 15. The Mars rover used one of its navigation cameras to capture the 31 images that make up this short video. NASA/JPL-Caltech Data from those efforts showed that while all three approaches enhanced traction, sticking close to the slope’s northern edge proved the most beneficial. The rover planners believe the presence of larger rocks closer to the surface made the difference. “That’s the plan right now, but we may have to change things up the road,” said Miller. “No Mars rover mission has tried to climb up a mountain this big this fast. The science team wants to get to the top of the crater rim as soon as possible because of the scientific opportunities up there. It’s up to us rover planners to figure out a way to get them there.” Tube Status In a few weeks, Perseverance is expected to crest the crater rim at a location the science team calls “Lookout Hill.” From there, it will drive about another quarter-mile (450 meters) to “Witch Hazel Hill.” Orbital data shows that Witch Hazel Hill contains light-toned, layered bedrock. The team is looking forward to comparing this new site to “Bright Angel,” the area where Perseverance recently discovered and sampled the “Cheyava Falls” rock. Tracks shown in this image indicate the slipperiness of the terrain Perseverance has encountered during its climb up the rim of Jezero Crater. The image was taken by one of rover’s navigation cameras on Oct. 11. NASA/JPL-Caltech The rover landed on Mars carrying 43 tubes for collecting samples from the Martian surface. So far, Perseverance has sealed and cached 24 samples of rock and regolith (broken rock and dust), plus one atmospheric sample and three witness tubes. Early in the mission’s development, NASA set the requirement for the rover to be capable of caching at least 31 samples of rock, regolith, and witness tubes over the course of Perseverance’s mission at Jezero. The project added 12 tubes, bringing the total to 43. The extras were included in anticipation of the challenging conditions found at Mars that could result in some tubes not functioning as designed. NASA decidedto retire two of the spare empty tubes because accessing them would pose a risk to the rover’s small internal robotic sample-handling arm needed for the task: A wire harness connected to the arm could catch on a fastener on the rover’s frame when reaching for the two empty sample tubes. With those spares now retired, Perseverance currently has 11 empty tubes for sampling rock and two empty witness tubes. More About Perseverance A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith. NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis. The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover. For more about Perseverance: https://science.nasa.gov/mission/mars-2020-perseverance News Media Contacts Karen Fox / Molly Wasser NASA Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov DC Agle Jet Propulsion Laboratory, Pasadena, Calif. 818-393-9011 agle@jpl.nasa.gov 2024-146 Share Details Last Updated Oct 28, 2024 Related Terms Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope Article 13 hours ago 4 min read Could Life Exist Below Mars Ice? NASA Study Proposes Possibilities Article 2 weeks ago 4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the… Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System
NASA Administrator Bill Nelson announced Monday Mike Kincaid, associate administrator, Office of STEM Engagement (OSTEM), and Alexander MacDonald, chief economist, will retire from the agency. Following Kincaid’s departure on Nov. 30, Kris Brown, deputy associate administrator for strategy and integration in OSTEM, will serve as acting associate administrator for that office beginning Dec. 1, and […]
Portraits of Mike Kincaid, associate administrator, Office of STEM Engagement (left), and Alexander MacDonald, chief economist (right). NASA Administrator Bill Nelson announced Monday Mike Kincaid, associate administrator, Office of STEM Engagement (OSTEM), and Alexander MacDonald, chief economist, will retire from the agency. Following Kincaid’s departure on Nov. 30, Kris Brown, deputy associate administrator for strategy and integration in OSTEM, will serve as acting associate administrator for that office beginning Dec. 1, and after MacDonald’s departure on Dec. 31, research economist Dr. Akhil Rao from NASA’s Office of Technology, Policy and Strategy will serve as acting chief economist. “I’d like to express my sincere gratitude to Mike Kincaid and Alex MacDonald for their service to NASA and our country,” said Nelson. “Both have been essential members of the NASA team – Mike since his first days as an intern at Johnson Space Center and Alex in his many roles at the agency. I look forward to working with Kris Brown and Dr. Akhil Rao in their acting roles and wish Mike and Alex all the best in retirement.” As associate administrator of NASA’s Office of STEM Engagement, Kincaid led the agency’s efforts to inspire and engage Artemis Generation students and educators in science, technology, engineering, and mathematics (STEM). He also chaired NASA’s STEM Board, which assesses the agency’s STEM engagement functions and activities, as well as served as a member of Federal Coordination in STEM, a multiagency committee focused on enhancing STEM education efforts across the federal government. In addition, Kincaid was NASA’s representative on the International Space Education Board, leading global collaboration in space education, sharing best practices, and uniting efforts to foster interest in space, science, and technology among students worldwide. Having served at NASA for more than 37 years, Kincaid first joined the agency’s Johnson Space Center in Houston as an intern in 1987, and eventually led organizations at Johnson in various capacities including, director of education, deputy director of human resources, deputy chief financial officer and director of external relations. Kincaid earned a bachelor’s degree from Texas A&M and a master’s degree from University of Houston, Clear Lake. MacDonald served as the first chief economist at NASA. He was previously the senior economic advisor in the Office of the Administrator, as well as the founding program executive of NASA’s Emerging Space Office within the Office of the Chief Technologist. MacDonald has made significant contributions to the development of NASA’s Artemis and Moon to Mars strategies, NASA’s strategy for commercial low Earth orbit development, NASA’s Earth Information Center, and served as the program executive for the International Space Station National Laboratory, leading it through significant leadership changes. He also is the author and editor of several NASA reports, including “Emerging Space: The Evolving Landscape of 21st Century American Spaceflight,” “Public-Private Partnerships for Space Capability Development,” “Economic Development of Low Earth Orbit,” and NASA’s biennial Economic Impact Report. As chief economist, MacDonald has guided NASA’s economic strategy, including increasing engagement with commercial space companies, and influenced the agency’s understanding of space as an engine of economic growth. MacDonald began his career at NASA’s Ames Research Center in the Mission Design Center, and served at NASA’s Jet Propulsion Laboratory as an executive staff specialist on commercial space before moving to NASA Headquarters. MacDonald received his bachelor’s degree in economics from Queen’s University in Canada, his master’s degree in economics from the University of British Columbia, and obtained his doctorate on the long-run economic history of American space exploration from the University of Oxford. For information about NASA and agency programs, visit: https://www.nasa.gov -end- Meira Bernstein / Abbey Donaldson Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / abbey.a.donaldson@nasa.gov
- Nancy Grace Roman Space Telescope
- Goddard Space Flight Center
- Jet Propulsion Laboratory
NASA’s Nancy Grace Roman Space Telescope team has successfully completed integration of the Roman Coronagraph Instrument onto Roman’s Instrument Carrier, a piece of infrastructure that will hold the mission’s instruments, which will be integrated onto the larger spacecraft at a later date. The Roman Coronagraph is a technology demonstration that scientists will use to take […]
6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The Roman Coronagraph is integrated with the Instrument Carrier for NASA’s Nancy Grace Roman Space Telescope in a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Md., in October 2024. NASA/Sydney Rohde NASA’s Nancy Grace Roman Space Telescope team has successfully completed integration of the Roman Coronagraph Instrument onto Roman’s Instrument Carrier, a piece of infrastructure that will hold the mission’s instruments, which will be integrated onto the larger spacecraft at a later date. The Roman Coronagraph is a technology demonstration that scientists will use to take an important step in the search for habitable worlds, and eventually life beyond Earth. This integration took place at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where the space telescope is located and in development. This milestone follows the coronagraph’s arrival at the center earlier this year from NASA’s Jet Propulsion Laboratory (JPL) in Southern California where the instrument was developed, built, and tested. In a clean room at NASA’s Jet Propulsion Laboratory in Southern California in October 2023, scientist Vanessa Bailey stands behind the Roman Coronagraph, which has been undergoing testing at the lab. Designed to block starlight and allow scientists to see the faint light from planets outside our solar system, the Coronagraph is a technology demonstration that will be part of the Roman telescope. NASA/JPL-Caltech The Roman Coronagraph Instrument is a technology demonstration that will launch aboard the Nancy Grace Roman Space Telescope, NASA’s next flagship astrophysics mission. Roman will have a field of view at least 100 times larger than the agency’s Hubble Space Telescope and explore scientific mysteries surrounding dark energy, exoplanets, and infrared astrophysics. Roman is expected to launch no later than May 2027. The mission’s coronagraph is designed to make direct observations of exoplanets, or planets outside of our solar system, by using a complex suite of masks and active mirrors to obscure the glare of the planets’ host stars, making the planets visible. Being a technology demonstration means that the coronagraph’s goal is to test this technology in space and showcase its capabilities. The Roman Coronagraph is poised to act as a technological stepping stone, enabling future technologies on missions like NASA’s proposed Habitable Worlds Observatory, which would be the first telescope designed specifically to search for signs of life on exoplanets. “In order to get from where we are to where we want to be, we need the Roman Coronagraph to demonstrate this technology,” said Rob Zellem, Roman Space Telescope deputy project scientist for communications at NASA Goddard. “We’ll be applying those lessons learned to the next generation of NASA flagship missions that will be explicitly designed to look for Earth-like planets.” A team member works underneath the Instrument Carrier for Roman during the integration of the Coronagraph in a clean room at NASA Goddard in October 2024. NASA/Sydney Rohde A Major Mission Milestone The coronagraph was successfully integrated into Roman’s Instrument Carrier, a large grid-like structure that sits between the space telescope’s primary mirror and spacecraft bus, which will deliver the telescope to orbit and enable the telescope’s functionality upon arrival in space. Assembly of the mission’s spacecraft bus was completed in September 2024. The Instrument Carrier will hold both the coronagraph and Roman’s Wide Field Instrument, the mission’s primary science instrument, which is set to be integrated later this year along with the Roman telescope itself. “You can think of [the Instrument Carrier] as the skeleton of the observatory, what everything interfaces to,” said Brandon Creager, lead mechanical engineer for the Roman Coronagraph at JPL. The integration process began months ago with mission teams from across NASA coming together to plan the maneuver. Additionally, after its arrival at NASA Goddard, mission teams ran tests to prepare the coronagraph to be joined to the spacecraft bus. The Instrument Carrier for Roman is lifted during the integration of the Coronagraph in October 2024 at NASA Goddard. NASA/Sydney Rohde During the integration itself, the coronagraph, which is roughly the size and shape of a baby grand piano (measuring about 5.5 feet or 1.7 meters across), was mounted onto the Instrument Carrier using what’s called the Horizontal Integration Tool. First, a specialized adapter developed at JPL was attached to the instrument, and then the Horizontal Integration Tool was attached to the adapter. The tool acts as a moveable counterweight, so the instrument was suspended from the tool as it was carefully moved into its final position in the Instrument Carrier. Then, the attached Horizontal Integration Tool and adapter were removed from the coronagraph. The Horizontal Integration Tool previously has been used for integrations on NASA’s Hubble and James Webb Space Telescope. As part of the integration process, engineers also ensured blanketing layers were in place to insulate the coronagraph within its place in the Instrument Carrier. The coronagraph is designed to operate at room temperature, so insulation is critical to keep the instrument at the right temperature in the cold vacuum of space. This insulation also will provide an additional boundary to block stray light that could otherwise obscure observations. Following this successful integration, engineers will perform different checks and tests to ensure that everything is connected properly and is correctly aligned before moving forward to integrate the Wide Field Instrument and the telescope itself. Successful alignment of the Roman Coronagraph’s optics is critical to the instrument’s success in orbit. Team members stand together during the integration of the Roman Coronagraph in a clean room at NASA Goddard in October 2024. NASA/Sydney Rohde This latest mission milestone is the culmination of an enduring collaboration between a number of Roman partners, but especially between NASA Goddard and NASA JPL. “It’s really rewarding to watch these teams come together and build up the Roman observatory. That’s the result of a lot of teams, long hours, hard work, sweat, and tears,” said Liz Daly, the integrated payload assembly integration and test lead for Roman at Goddard. “Support and trust were shared across both teams … we were all just one team,” said Gasia Bedrosian, the integration and test lead for the Roman Coronagraph at JPL. Following the integration, “we celebrated our success together,” she added. The Roman Coronagraph Instrument was designed and built at NASA JPL, which manages the instrument for NASA. Contributions were made by ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), the French space agency CNES (Centre National d’Études Spatiales), and the Max Planck Institute for Astronomy in Germany. Caltech, in Pasadena, California, manages NASA JPL for the agency. The Roman Science Support Center at Caltech/IPAC partners with NASA JPL on data management for the Coronagraph and generating the instrument’s commands. Virtually tour an interactive version of the telescope The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California. By Chelsea Gohd NASA’s Jet Propulsion Lab, Pasadena, Calif. Media Contact: Claire Andreoli claire.andreoli@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. 301-286-1940 Share Details Last Updated Oct 28, 2024 Editor Jeanette Kazmierczak Contact Claire Andreoli Location Goddard Space Flight Center Related Terms Nancy Grace Roman Space Telescope Goddard Space Flight Center Jet Propulsion Laboratory
- Artemis
- Artemis 3
- Earth's Moon
- Exploration Systems Development Mission Directorate
- Human Landing System Program
- Humans in Space
- Space Launch System (SLS)
As NASA prepares for the first crewed Moon landing in more than five decades, the agency has identified an updated set of nine potential landing regions near the lunar South Pole for its Artemis III mission. These areas will be further investigated through scientific and engineering study. NASA will continue to survey potential areas for […]
This image shows nine candidate landing regions for NASA’s Artemis III mission, with each region containing multiple potential sites for the first crewed landing on the Moon in more than 50 years. The background image of the lunar South Pole terrain within the nine regions is a mosaic of LRO (Lunar Reconnaissance Orbiter) WAC (Wide Angle Camera) images. Credit: NASA As NASA prepares for the first crewed Moon landing in more than five decades, the agency has identified an updated set of nine potential landing regions near the lunar South Pole for its Artemis III mission. These areas will be further investigated through scientific and engineering study. NASA will continue to survey potential areas for missions following Artemis III, including areas beyond these nine regions. “Artemis will return humanity to the Moon and visit unexplored areas. NASA’s selection of these regions shows our commitment to landing crew safely near the lunar South Pole, where they will help uncover new scientific discoveries and learn to live on the lunar surface,” said Lakiesha Hawkins, assistant deputy associate administrator, Moon to Mars Program Office. NASA’s Cross Agency Site Selection Analysis team, working closely with science and industry partners, added, and excluded potential landing regions, which were assessed for their science value and mission availability. The refined candidate Artemis III lunar landing regions are, in no priority order: Peak near Cabeus B Haworth Malapert Massif Mons Mouton Plateau Mons Mouton Nobile Rim 1 Nobile Rim 2 de Gerlache Rim 2 Slater Plain These regions contain diverse geological characteristics and offer flexibility for mission availability. The lunar South Pole has never been explored by a crewed mission and contains permanently shadowed areas that can preserve resources, including water. “The Moon’s South Pole is a completely different environment than where we landed during the Apollo missions,” said Sarah Noble, Artemis lunar science lead at NASA Headquarters in Washington. “It offers access to some of the Moon’s oldest terrain, as well as cold, shadowed regions that may contain water and other compounds. Any of these landing regions will enable us to do amazing science and make new discoveries.” To select these landing regions, a multidisciplinary team of scientists and engineers analyzed the lunar South Pole region using data from NASA’s Lunar Reconnaissance Orbiter and a vast body of lunar science research. Factors in the selection process included science potential, launch window availability, terrain suitability, communication capabilities with Earth, and lighting conditions. Additionally, the team assessed the combined trajectory capabilities of NASA’s SLS (Space Launch System) rocket, the Orion spacecraft, and Starship HLS (Human Landing System) to ensure safe and accessible landing sites. The Artemis III geology team evaluated the landing regions for their scientific promise. Sites within each of the nine identified regions have the potential to provide key new insights into our understanding of rocky planets, lunar resources, and the history of our solar system. “Artemis III will be the first time that astronauts will land in the south polar region of the Moon. They will be flying on a new lander into a terrain that is unique from our past Apollo experience,” said Jacob Bleacher, NASA’s chief exploration scientist. “Finding the right locations for this historic moment begins with identifying safe places for this first landing, and then trying to match that with opportunities for science from this new place on the Moon.” NASA’s site assessment team will engage the lunar science community through conferences and workshops to gather data, build geologic maps, and assess the regional geology of eventual landing sites. The team also will continue surveying the entire lunar South Pole region for science value and mission availability for future Artemis missions. This will include planning for expanded science opportunities during Artemis IV, and suitability for the LTV (Lunar Terrain Vehicle) as part of Artemis V. The agency will select sites within regions for Artemis III after it identifies the mission’s target launch dates, which dictate transfer trajectories, or orbital paths, and surface environment conditions. Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. For more information on Artemis, visit: https://www.nasa.gov/specials/artemis -end- James Gannon / Molly Wasser Headquarters, Washington 202-358-1600 james.h.gannon@nasa.gov / molly.l.wasser@nasa.gov Share Details Last Updated Oct 28, 2024 Editor Jessica Taveau Location NASA Headquarters Related Terms Artemis Artemis 3 Earth's Moon Exploration Systems Development Mission Directorate Human Landing System Program Humans in Space Space Launch System (SLS)
Earth planning date: Wednesday, Oct. 23, 2024 Curiosity is driving along the western edge of the Gediz Vallis channel, heading for a good vantage point before turning westward and leaving the channel behind to explore the canyons beyond. The contact science for “Chuck Pass” on sol 4341 and backwards 30-meter drive (about 98 feet) on […]
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read Sols 4343-4344: Late Slide, Late Changes NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera, showing the fractured rock target “Quarter Dome” just above and to the right of the foreground rover structure. The eastern wall of the Gediz Vallis channel can be seen in the distance. This image was taken on sol 4342 — Martian day 4,342 of the Mars Science Laboratory mission — on Oct. 23, 2024, at 12:29:34 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Oct. 23, 2024 Curiosity is driving along the western edge of the Gediz Vallis channel, heading for a good vantage point before turning westward and leaving the channel behind to explore the canyons beyond. The contact science for “Chuck Pass” on sol 4341 and backwards 30-meter drive (about 98 feet) on sol 4342 completed successfully. This morning, planning started two hours later than usual. At the end of each rover plan is a baton pass involving Curiosity finishing its activities from the previous plan, transmitting its acquired data to a Mars-orbiting relay satellite passing over Gale Crater, and having that satellite send this data to the Deep Space Network on Earth. This dataset is crucial to our team’s decisions on Curiosity’s next activities. It is not always feasible for us to get our critical data transmitted before the preferred planning shift start time of 8 a.m. This leads to what we call a “late slide,” when our planning days start and end later than usual. Today’s shift began as the “decisional downlink” arrived just before 10 a.m. PDT. The science planning team jumped into action as the data rolled in, completed plans for two sols of science activities, then had to quickly change those plans completely as the Rover Planners perusing new images from the decisional downlink determined that the position of Curiosity’s wheels after the drive would not support deployment of its arm, eliminating the planned use of APXS, MAHLI, and the DRT on interesting rocks in the workspace. However, the science team was able to pivot quickly and create an ambitious two-sol science plan for Curiosity with the other science instruments. On sols 4343-4344, Curiosity will focus on examining blocks of finely layered or “laminated” bedrocks in its workspace. The “Backbone Creek” target, which has an erosion resistant vertical fin of dark material, will be zapped by the ChemCam laser to determine composition, and photographed by Mastcam. “Backbone Creek” is named for a stream in the western foothills of the Sierra Nevada of California flowing through a Natural Research Area established to protect the endangered Carpenteria californica woodland shrub. Curiosity is currently in the “Bishop” quadrangle on our map, so all targets in this area of Mount Sharp are named after places in the Sierra Nevada and Owens Valley of California. A neighboring target rock, “Fantail Lake,” which has horizontal fins among its layers, will also be imaged at high resolution by Mastcam. This target name honors a large alpine lake at nearly 10,000 feet just beyond the eastern boundary of Yosemite National Park. A fractured rock dubbed “Quarter Dome,” after a pair of Yosemite National Park’s spectacular granitic domes along the incomparable wall of Tenaya Canyon between Half Dome and Cloud’s Rest, will be the subject of mosaic images for both Mastcam and ChemCam RMI to obtain exquisite detail on delicate layers across its broken surface (see image). The ChemCam RMI telescopic camera will look at light toned rocks on the upper Gediz Vallis ridge. Curiosity will also do a Navcam dust devil movie and mosaic of dust on the rover deck, then determine dust opacity in the atmosphere using Mastcam. Following this science block, Curiosity will drive about 18 meters (about 59 feet) and perform post-drive imaging, including a MARDI image of the ground under the rover. On sol 4344, the rover will do Navcam large dust devil and deck surveys. It will then use both Navcam and ChemCam for an AEGIS observation of the new location. Presuming that Curiosity ends the drive on more solid footing than today’s location, it will do contact science during the weekend plan, then drive on towards the next fascinating waypoint on our journey towards the western canyons of Mount Sharp. Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory Image Download Share Details Last Updated Oct 28, 2024 Related Terms Blogs Explore More 2 min read Red Rocks with Green Spots at ‘Serpentine Rapids’ Article 3 days ago 4 min read Sols 4341-4342: A Bumpy Road Article 4 days ago 3 min read Sols 4338-4340: Decisions, Decisions Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
- Office of International and Interagency Relations (OIIR)
- artemis accords
- Missions
Chile signed the Artemis Accords Friday during a ceremony hosted by NASA Administrator Bill Nelson at the agency’s headquarters in Washington, becoming the 47th nation and the seventh South American country to commit to the responsible exploration of space for all humanity. “Today we welcome Chile’s signing of the Artemis Accords and its commitment to […]
From left to right, Chilean Ambassador to the United States Juan Gabriel Valdés, Chilean Minister of Science, Technology, Knowledge, and Innovation Aisén Etcheverry Escudero, NASA Administrator Bill Nelson, and United States Department of State Acting Assistant Secretary in the Bureau of Oceans and International Environmental and Scientific Affairs Jennifer R. Littlejohn pose for a photo after the signing of the Artemis Accords, Friday, Oct. 25, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Republic of Chile is the 47th country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. NASA/Keegan Barber Chile signed the Artemis Accords Friday during a ceremony hosted by NASA Administrator Bill Nelson at the agency’s headquarters in Washington, becoming the 47th nation and the seventh South American country to commit to the responsible exploration of space for all humanity. “Today we welcome Chile’s signing of the Artemis Accords and its commitment to the shared values of all the signatories for the exploration of space,” said Nelson. “The United States has long studied the stars from Chile’s great Atacama Desert. Now we will go to the stars together, safely, and responsibly, and create new opportunities for international cooperation and the Artemis Generation.” Aisén Etcheverry, minister of science, technology, knowledge and innovation, signed the Artemis Accords on behalf of Chile. Jennifer Littlejohn, acting assistant secretary, Bureau of Oceans and International Environmental and Scientific Affairs, U.S. Department of State, and Juan Gabriel Valdés, ambassador of Chile to the United States, also participated in the event. “The signing marks a significant milestone for Chile, particularly as our government is committed to advancing technological development as a key pillar of our national strategy,” said Etcheverry. “Chile has the opportunity to engage in the design and development of world-leading scientific and technological projects. Moreover, this collaboration allows us to contribute to areas of scientific excellence where Chile has distinguished expertise, such as astrobiology, geology, and mineralogy, all of which are critical for the exploration and colonization of space.” Earlier in the day, Nelson also hosted the Dominican Republic at NASA Headquarters to recognize the country’s signing of the Artemis Accords Oct. 4. Sonia Guzmán, ambassador of the Dominican Republic to the United States, delivered the signed Artemis Accords to the NASA administrator. Mike Overby, acting deputy assistant secretary, Bureau of Oceans and International Environmental and Scientific Affairs, U.S. Department of State, and other NASA officials attended the event. In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, identifying an early set of principles promoting the beneficial use of space for humanity. The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space. More countries are expected to sign in the coming weeks and months. Learn more about the Artemis Accords at: https://www.nasa.gov/artemis-accords -end- Meira Bernstein / Elizabeth Shaw Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov Share Details Last Updated Oct 25, 2024 Location NASA Headquarters Related Terms Office of International and Interagency Relations (OIIR) artemis accords Missions